How do you find the distance a ball travels if fired at speed u and angle theta from the ground?

From a right angled triangle with hypotenuse u and angle theta, we see the horizontal speed is (u cos theta) and the initial vertical speed is (u sin theta). As the ball moves in a symmetric parabola, it hits the ground with vertical speed (-u sin theta).Therefore, the ball must be in the air for (2 u sin theta / g) seconds, so it travels a distance of (2 u^2 sin theta cos theta / g). This can be simplified to (u^2 sin (2 theta) / g).

DB
Answered by Douglas B. Maths tutor

2999 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using integration by parts, and given f(x) = 3xcos(x), find integrate(f(x) dx) between (pi/2) and 0.


Differentiate f(x) = (3x + 5)(4x - 7)


Compute the integral of f(x)=x^3/x^4+1


Prove by induction that, for n ∈ Z⁺ , [3 , -2 ; 2 , -1]ⁿ = [2n+1 , -2n ; 2n , 1-2n]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning