How do you find the distance a ball travels if fired at speed u and angle theta from the ground?

From a right angled triangle with hypotenuse u and angle theta, we see the horizontal speed is (u cos theta) and the initial vertical speed is (u sin theta). As the ball moves in a symmetric parabola, it hits the ground with vertical speed (-u sin theta).Therefore, the ball must be in the air for (2 u sin theta / g) seconds, so it travels a distance of (2 u^2 sin theta cos theta / g). This can be simplified to (u^2 sin (2 theta) / g).

DB
Answered by Douglas B. Maths tutor

2566 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to solve a quadratic equation?


Find the integral on ln(x).


Prove algebraically that the sum of the squares of two consecutive multiples of 5 is not a multiple of 10.


Prove algebraically that n^3 +3n -1 is odd for all positive integers n


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences