Can you explain how to find straight line equations?

Straight line equations always come in the form y=mx+c, where m is the gradient of the line (how steep it it) and c is the point where the line crosses the y axis (the y intercept).If you are given two points say 1 - (2, -4) and 2 - (6, 8) we can find the equation of the line that runs through them.First we find the gradient - this is the change in y over the change in x, (y2 - y1) / (x2 - x1)Here this is (8- (-4)) / (6 -2) = 12/4 = 3Next we plug this into the form of the equation and use one of the points to find ceg using point 1, -4 = 3 x 2 + cwe then re arrange -4 - 6 = cTherefore c = -10Finally we use all the values we have found to create the straight line equation,y=3 x -10

Answered by Judy Q. Maths tutor

1885 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The equation of the line L1 is y=3x–2. The equation of the line L2 is 3y–9x+5=0. Show that these two lines are parallel.


Express 60 as a product of its prime factors.


Expand and and simplify (x^2 + 7) (x - 1)


The rectangles A and B have perimeters of 94cm and 56cm as shown below (insert diagram). Rectangle A: base = 2x cm, height = 3y cm. Rectangle B: base = (x+6)cm, height = (y+4)cm. Use an algebraic method to calculate the area of each rectangle. (8 marks)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences