A triangle has sides a,b,c and angles A,B,C with a opposite A etc. If a=4,b=3,A=40, what is the area of the triangle?

First use the sine rule (that a/sin(A)=b/sin(B)=c/sin(C)) to find the value of B. a/sin(A)=b/sin(B) so B=arcsin(bsin(A)/a) which is approximately equal to 28.82. Since the angles of a triangle have 180 degrees we then know that C is roughly equal to 111.18. Now we can use S=ab*sin(C)/2 where S is the area of the triangle so the area is roughly 5.59.

Answered by Maths tutor

2627 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

g(x) = ( x / (x+3) ) + ( 3(2x+1) / (x^2 + x - 6) ). Show that this can be simplified to: g(x) = (x+1) / (x-2).


how to turn a fraction in the form of (x + a)/(x + b)^2 into partial fractions?


A curve C has equation y = (2 - x)(1 + x) + 3 . A line passes through the point (2, 3) and the point on C with x-coordinate 2 + h . Find the gradient of the line, giving your answer in its simplest form.


What is the coefficient of x^4 in the expansion of (x+3)^7


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning