A triangle has sides a,b,c and angles A,B,C with a opposite A etc. If a=4,b=3,A=40, what is the area of the triangle?

First use the sine rule (that a/sin(A)=b/sin(B)=c/sin(C)) to find the value of B. a/sin(A)=b/sin(B) so B=arcsin(bsin(A)/a) which is approximately equal to 28.82. Since the angles of a triangle have 180 degrees we then know that C is roughly equal to 111.18. Now we can use S=ab*sin(C)/2 where S is the area of the triangle so the area is roughly 5.59.

Related Maths A Level answers

All answers ▸

What is the first derivative of y=5z(1+2z2)? Is this a minimum, maximum or turning point?


How would you integrate (4x+1)^1/3 ?


Integrate 4x^3 + 6x^2 +4x + 3


For y = 7x - x^3, find the two stationary points and what type of stationary points they are.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences