write the sum cos(x)+cos(2x)+...+cos(nx) as a quotient only involving sine and cosine functions

We can write this sum S as Re(e^ix+e^2ix+...+e^nix), we now have a finite geometric series, which we know the formula for.Have, S = Re( e^ix(1-e^inx)/(1-e^ix)) - Now factoring numerator and denominator to look like complex formula for sine function we get,S = Re( e^ixe^inx/2(e^-inx/2-e^inx/2)/(e^ix/2(e^-ix/2-e^ix/2))) = Re(e^i(n/2+1/2)xsin(nx/2)/sin(x/2))Now since n is an integer and x is an element of the reals taking the real part gives,S = sin(nx/2)cos(((n+1)/2)x)/sin(x/2)

Answered by Further Mathematics tutor

5089 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A block of mass 50kg resting on a rough surface with a coefficient of friction equal to 1/3. Find the maximum angle at which the surface can be inclined to the horizontal without the block slipping. Give your answer to 3 significant figures


How would go about finding the set of values of x for which x+4 > 4 / (x+1)?


How do you find the determinant of a matrix?


Let I(n) = integral from 1 to e of (ln(x)^n)/(x^2) dx where n is a natural number. Firstly find I(0). Show that I(n) = -(1/e) + n*I(n-1). Using this formula find I(1).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning