Let f(x) and g(x) be two odd functions defined for all real values of x. Given that s(x)=f(x)+g(x), prove that s(x) is also an odd function.

We recall that a function f(x) is said to be an odd function when f(-x)=-f(x).

We are told that f(x) and g(x) are odd functions, so we know from the above definition that:

1. f(-x)=-f(x)

2. g(-x)=-g(x)

Solution

We want to show that s(x) is an odd function. In other words, we want to show that s(-x)=-s(x) (that it satisfies the above definition).

We are told that s(x)=f(x)+g(x), so substituting x for -x, we get that

s(-x)=f(-x)+g(-x)

=-f(x)-g(x) (using 1 and 2)

=-(f(x)+g(x))

=-s(x) as required!

We have now shown that s(-x)=-s(x) and thus we have proven that s(x) is indeed an odd function.

Answered by Keir H. Maths tutor

12727 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Factorise completely x-4x^3


Express cos(2x) in the form acos^2(x) + b, where a and b are constants.


what is d(2x^3)/dx?


I know how to integrate, but I still never see any real world example of it, so it is difficult to understand. Why is it useful?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences