Let f(x) and g(x) be two odd functions defined for all real values of x. Given that s(x)=f(x)+g(x), prove that s(x) is also an odd function.

We recall that a function f(x) is said to be an odd function when f(-x)=-f(x).

We are told that f(x) and g(x) are odd functions, so we know from the above definition that:

1. f(-x)=-f(x)

2. g(-x)=-g(x)

Solution

We want to show that s(x) is an odd function. In other words, we want to show that s(-x)=-s(x) (that it satisfies the above definition).

We are told that s(x)=f(x)+g(x), so substituting x for -x, we get that

s(-x)=f(-x)+g(-x)

=-f(x)-g(x) (using 1 and 2)

=-(f(x)+g(x))

=-s(x) as required!

We have now shown that s(-x)=-s(x) and thus we have proven that s(x) is indeed an odd function.

Answered by Keir H. Maths tutor

12802 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use the substitution u = cos 2x to find ∫(cos^2*(2x) *sin3 (2x)) dx


i) It is given that f(x)=(-5-33x)/((1+x)(1+5x)), express f(x) in the form A/(1+x) + B/(1+5x) where A,B are integers. ii) hence express the integral of f(x) between x=3 and x=0 in the form (p/q)ln4 where p,q are integers.


Find the inverse of y = (5x-4) / (2x+3)


Given that sin(x)^2 + cos(x)^2 = 1, show that sec(x)^2 - tan(x)^2 = 1 (2 marks). Hence solve for x: tan(x)^2 + cos(x) = 1, x ≠ (2n + 1)π and -2π < x =< 2π(3 marks)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences