How to differentiate with respect to x, xsin2x.

There are to parts involving x in this expression, so we need to use the product rule. Let u=x and v=sin2x.So we find u'=1, and v'=2sin2x. Then the formula for the product rule gives us that d/dx(uv)= uv' + vu'. so substituting in our values gives us that d/dx(xsin2x) = x(2sin2x) + 1(x) = 2xsin2x + x.

ER
Answered by Emily R. Maths tutor

9345 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

find the value of dy/dx at the point (1,1) of the equation e^(2x)ln(y)=x+y-2


Differentiate the following equation with respect to x; sinx + 3x^2 - 2.


A curve has parametric equations: x = 3t +8, y = t^3 - 5t^2 + 7t. Find the co-ordinates of the stationary points.


How to find out where 2 lines cross/simultaneous equations


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning