The straight line L1 passes through the points with coordinates (4, 6) and (12, 2) . The straight line L2 passes through the origin and has a gradient of -3. The lines L1 and L2 intersect at point P. Find the coordinates of P.

First, we want to find the gradient of L1 using (4,6) and (12,2)m= (2-6)/ (12-4) = -1/2 then we can find the equation of L1 using y=mx+c rearrange for c as the subject, c= y-mx and substitute the gradient and some coordinates: c= 6-(-1/2)(4) = 8 therefore L1: y= (-1/2)x + 8 The equation for L2 is y=-3x
To find P we equate L1 and L2: (-1/2)x+8=-3x
(-5/2)x=8 x= -16/5
y= -3(-16/5) = 48/5

Answered by Anaika N. Maths tutor

8372 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

x^2 + 6x + 8


Show algebraically that (4n-3)^2 - (2n+5)^2 is always a multiple of n-4


Find the length of the longest side of a right angled triangle with the two smaller sides equal to 8 and 15.


How do you factorize a quadratic when a ≠ 1 when ax²+bx+c=0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences