a) Show that d/dx(arcsin x) = 1/(√ (1-x²)). b) Hence, use a suitable trigonometric substitution to find ∫ (1/(√ (4-2x-x²))) dx.

Will be easier to explain with whiteboard!a) Let y = arcsin x. sin y = x cos y dy/dx = 1 dy/dx = 1/(cos y) dy/dx = 1/(√ (1 - sin2y)) dy/dx = 1/(√( 1 - x2)) as required.b) 4 - 2x - x2 = - (x2 + 2x - 4) = - [(x+1)2 - 5] = 5 - (x+1)2 So, ∫ (1/(√ (4-2x-x²))) dx = ∫ (1/(√ (5 - (x + 1)2))) dx Substitution: x + 1 = √ 5 sin θ dx/dθ = √ 5 cos θ dx = √ 5 cos θ dθ So, ∫ (1/(√ (5 - (x + 1)2))) dx = ∫ (1/(√ (5 - 5 sin2θ)) √ 5 cos θ) dθ = ∫ 1 dθ = θ + c = arcsin ((x+1)/√ 5) + c

Related Further Mathematics A Level answers

All answers ▸

differentiate arsinh(cosx))


Let E be an ellipse with equation (x/3)^2 + (y/4)^2 = 1. Find the equation of the tangent to E at the point P where x = √3 and y > 0, in the form ax + by = c, where a, b and c are rational.


P(A)=0.2, P(A|B) = 0.3 and P(AuB)=0.6. Find i P(B) ii P(B'|A')


How would you show the equation f(x) = 2x – 10 sin x – 2 has a root between 2 and 3 (where x is measured in radians)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences