a) Show that d/dx(arcsin x) = 1/(√ (1-x²)). b) Hence, use a suitable trigonometric substitution to find ∫ (1/(√ (4-2x-x²))) dx.

Will be easier to explain with whiteboard!a) Let y = arcsin x. sin y = x cos y dy/dx = 1 dy/dx = 1/(cos y) dy/dx = 1/(√ (1 - sin2y)) dy/dx = 1/(√( 1 - x2)) as required.b) 4 - 2x - x2 = - (x2 + 2x - 4) = - [(x+1)2 - 5] = 5 - (x+1)2 So, ∫ (1/(√ (4-2x-x²))) dx = ∫ (1/(√ (5 - (x + 1)2))) dx Substitution: x + 1 = √ 5 sin θ dx/dθ = √ 5 cos θ dx = √ 5 cos θ dθ So, ∫ (1/(√ (5 - (x + 1)2))) dx = ∫ (1/(√ (5 - 5 sin2θ)) √ 5 cos θ) dθ = ∫ 1 dθ = θ + c = arcsin ((x+1)/√ 5) + c

Related Further Mathematics A Level answers

All answers ▸

What is the general solution to the equation d2y/dx2 + dy/dx - 2y = -3sinx + cosx (d2y/dx2 signals a second order derivative)


Differentiate arctan of x with respect to x.


Use the geometric series e^(ix) - (1/2)e^(3ix) + (1/4)e^(5ix) - ... to find the exact value sin1 -(1/2)sin3 + (1/4)sin5 - ...


Find the modulus and argument of the complex number 1+2i


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences