a) Show that d/dx(arcsin x) = 1/(√ (1-x²)). b) Hence, use a suitable trigonometric substitution to find ∫ (1/(√ (4-2x-x²))) dx.

Will be easier to explain with whiteboard!a) Let y = arcsin x. sin y = x cos y dy/dx = 1 dy/dx = 1/(cos y) dy/dx = 1/(√ (1 - sin2y)) dy/dx = 1/(√( 1 - x2)) as required.b) 4 - 2x - x2 = - (x2 + 2x - 4) = - [(x+1)2 - 5] = 5 - (x+1)2 So, ∫ (1/(√ (4-2x-x²))) dx = ∫ (1/(√ (5 - (x + 1)2))) dx Substitution: x + 1 = √ 5 sin θ dx/dθ = √ 5 cos θ dx = √ 5 cos θ dθ So, ∫ (1/(√ (5 - (x + 1)2))) dx = ∫ (1/(√ (5 - 5 sin2θ)) √ 5 cos θ) dθ = ∫ 1 dθ = θ + c = arcsin ((x+1)/√ 5) + c

Related Further Mathematics A Level answers

All answers ▸

The cubic equation 27(z^3) + k(z^2) + 4 = 0 has roots α, β and γ. In the case where β=γ, find the roots of the equation and determine the value of k


It is given that f(x) = 2sinhx+3coshx. Show that the curve y = f(x) has a stationary point at x =-½ ln(5) and find the value of y at this point. Solve the equation f(x) = 5, giving your answers exactly


Can you express 3 + 4j in polar form?


I do not understand this topic and particularly this example. In the class the result was found out but I still do not get it. How did the teacher came up with this outcome?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences