Prove by contradiction that 2^(1/3) is an irrational number

Assume 2^(1/3) is rational, so can be written as p/q where p and q are integers with no common factors. p/q = 2^(1/3) (p^3)/(q^3) = 2 p^3 = 2q^3 Hence, p is even. Thus, p can be written as 2r, where r is an integer. p^3 = (2r)^3 = 2q^3 8r^3 = 2q^3 4r^3 = q^3 Hence, q is even. Therefore, p and q have common factor 2, which is a contradiction.

OR
Answered by Oscar R. Maths tutor

11952 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C with an equation y = sin(x)/e^(2x) , 0<x<pi has a stationary point at P. Find the coordinates ofP?


When finding the turning points of a curve, how can I tell if it is a maximum, minimum or a point of inflection?


The line L has equation 7x - 2y + 11 = 0, Find the gradient of l


Given that y = 4x^3 -1 + 2x^1/2 (where x>0) find dy/dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning