Prove by contradiction that 2^(1/3) is an irrational number

Assume 2^(1/3) is rational, so can be written as p/q where p and q are integers with no common factors. p/q = 2^(1/3) (p^3)/(q^3) = 2 p^3 = 2q^3 Hence, p is even. Thus, p can be written as 2r, where r is an integer. p^3 = (2r)^3 = 2q^3 8r^3 = 2q^3 4r^3 = q^3 Hence, q is even. Therefore, p and q have common factor 2, which is a contradiction.

OR
Answered by Oscar R. Maths tutor

11294 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate the function f(x) = ax^2 + bx + c over the interval [0,1], where a, b and c are constants.


A curve is defined for x>0 as y = 9 - 6x^2 - 12x^4 . a) Find dy/dx. b) Hence find the coordinates of any stationary points on the curve and classify them.


Using Discriminants to Find the Number of Roots of a Quadratic Curve


A car is moving on an inclined road with friction acting upon it. When it is moving up the road at a speed v the engine is working at power 3P and when it is moving down the road at v the engine is working at a power P. Find the value of P.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences