Prove by contradiction that 2^(1/3) is an irrational number

Assume 2^(1/3) is rational, so can be written as p/q where p and q are integers with no common factors. p/q = 2^(1/3) (p^3)/(q^3) = 2 p^3 = 2q^3 Hence, p is even. Thus, p can be written as 2r, where r is an integer. p^3 = (2r)^3 = 2q^3 8r^3 = 2q^3 4r^3 = q^3 Hence, q is even. Therefore, p and q have common factor 2, which is a contradiction.

Answered by Oscar R. Maths tutor

10629 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of the curve y = x^2(ln(x)) at x = e


Using methods of substitution solve the following simultaneous equations: y - 2x - 1 = 0 and 4x^2 + y^2 - 25 = 0


Show how you can rewrite (x+1)(x-2)(x+3) into the form of ax^3 + bx^2 + cx + d


The point P (4, –1) lies on the curve C with equation y = f( x ), x > 0, and f '(x) =x/2 - 6/√x + 3. Find the equation of the tangent to C at the point P , giving your answer in the form y = mx + c. Find f(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences