Given the equation x^3-12x^2+ax-48=0 has roots p, 2p and 3p, find p and a.

QUESTION: Given the equation x3-12x2+ax-48 = 0 has roots p, 2p and 3p, find p and a. Roots mean x = p, x = 2p and x = 3p hence (x-p), (x-2p) and (x-3p) are factors of the equation. Expanding these three factors together will equal the equation. (x-p)(x-2p)(x-3p) = (x2-px-2px+2p2)(x-3p) = (x3-px2-2px2+2p2x-3px2+3p2x+6p2x-6p3) = 0. By collecting and equating coefficients both p and a can be found. x3+(-p-2p-3p)x2+(2p2+3p2+6p2)x-6p3 = x3-6px2+11p2x-6p3 -6p3 = -48 hence p3 = 8 and so p = 2 11p2 = a and so a = 44 ANSWER: p = 2 and a = 44

MD
Answered by Macaulay D. Further Mathematics tutor

3262 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Explain the process of using de Moivre's Theorem to find a trigonometric identity. For example, express tan(3x) in terms of sin(x) and cos(x).


Solve the inequality x/(x+2) ≤ 4/(x-3) for x ≠ -2 or 3


How do I determine whether a system of 3 linear equations is consistent or not?


Solve the equation 3sinh(2x) = 13 - 3e^(2x), answering in the form 0.5ln(k). where k is an integer


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning