A curve has equation y = x^3 - 48x. The point A on the curve has x coordinate -4. The point B on the curve has x coordinate - 4 + h. Show that that the gradient of the line AB is h^2 - 12h.

First, let's recall the gradient formula:grad = change in y / change in x = y2 -y1 / x2 - x1So let's label point A as x1, and point B as x2, and find the corresponding y1 and y2 using the equation of the curve.x1 = -4, y1 = (-4)^3 - 48 (-4) = 128x2 = -4 + h, y2 = (-4 + h) ^ 3 - 48 (-4 + h) = h^3 - 12 h^2 + 48 h - 64 - 48 h + 192 (by expanding the brackets) = h^3 - 12 h^2 + 128 (by simplifying the expression)so gradient AB = (h^3 - 12 h^2 + 128 - 128) / (-4 + h - -4) = (h^3 - 12 h^2) / h = h^2 - 12h as required.

Answered by Oliver W. Maths tutor

4966 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The graphs of functions f(x)=e^x and h(x)=e^(-.5x), where x is a real number and 0<x<1 ,lie on a plane. Draw these functions and find the area they and the line x=0.6 enclose using integration correct to 3 decimal places


Differentiate y=(4x - 5)^5 by using the chain rule.


Two particles, A and B, are moving directly towards each other on a straight line with speeds of 6 m/s and 8 m/s respectively. The mass of A is 3 kg, and the mass of B is 2 kg. They collide to form a single particle of speed "v" m/s. Find v.


How do you integrate ln(x) ?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences