A curve has equation y = x^3 - 48x. The point A on the curve has x coordinate -4. The point B on the curve has x coordinate - 4 + h. Show that that the gradient of the line AB is h^2 - 12h.

First, let's recall the gradient formula:grad = change in y / change in x = y2 -y1 / x2 - x1So let's label point A as x1, and point B as x2, and find the corresponding y1 and y2 using the equation of the curve.x1 = -4, y1 = (-4)^3 - 48 (-4) = 128x2 = -4 + h, y2 = (-4 + h) ^ 3 - 48 (-4 + h) = h^3 - 12 h^2 + 48 h - 64 - 48 h + 192 (by expanding the brackets) = h^3 - 12 h^2 + 128 (by simplifying the expression)so gradient AB = (h^3 - 12 h^2 + 128 - 128) / (-4 + h - -4) = (h^3 - 12 h^2) / h = h^2 - 12h as required.

Answered by Oliver W. Maths tutor

5566 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the set of values of k for which x^2 + 2x+11 = k(2x-1)


The equation kx^2 + 4x + (5 – k) = 0, where k is a constant, has 2 different real solutions for x. Show that k satisfies k^2-5k+4>0.


g(x) = ( x / (x+3) ) + ( 3(2x+1) / (x^2 + x - 6) ). Show that this can be simplified to: g(x) = (x+1) / (x-2).


A particle of weight 15N is resting on a plane inclined at an angle of 30°. Find : a) the normal force exerted on the particle, b) the coefficient of friction between the particle and the plane, providing it is in limiting equilibrium


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences