Given that f(x) = x^2 (3x - 1)^(1/2) find f'(x)

This is an example of a question using the product rulelet u = x2 and v = (3x - 1)1/2then u' = 2x and v' = 3 X 1/2 (3x - 1)-1/2 using the product rule we get f'(x) = x2 X 3/2 (3x - 1)-1/2 + (3x - 1)1/2 X 2xwhich is simplified to = x(15x - 4) / [2(3x - 1)1/2]

Answered by Maths tutor

4007 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What are radians, why can't we just use degrees?


What is differentation and how does it work?


Express x^2 - 7x + 2 in the form (x - p)^2 + q , where p and q are rational numbers.


Find the equation of the normal to the curve x^3 + 2(x^2)y = y^3 + 15 at the point (2, 1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning