Given that f(x) = x^2 (3x - 1)^(1/2) find f'(x)

This is an example of a question using the product rulelet u = x2 and v = (3x - 1)1/2then u' = 2x and v' = 3 X 1/2 (3x - 1)-1/2 using the product rule we get f'(x) = x2 X 3/2 (3x - 1)-1/2 + (3x - 1)1/2 X 2xwhich is simplified to = x(15x - 4) / [2(3x - 1)1/2]

Answered by Maths tutor

3361 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y = 4(x^3) + 7x ... Find dy/dx


A ball is kicked and has an instantaneous velocity of 19.6m/s at an angle of 30 degrees to the horizontal. A target lies flat on the ground in the direction the ball is kicked and lies at a distance of (98/5)*(3^1/2)m. Does the ball land on the target?


How to find the equation of a tangent to a curve at a specific point.


Simplify 3log(x^2)+4log(y^3)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences