Differentiate the function: y = sin(x^2)*ln(5x)

We are tasked with differentiating y = sin(x2)ln(5x)
This function is actually a product of the functions:
sin(x2) and ln(5x)
Therefore the product rule will be required.
First let's calculate the derivatives of our individual functions before combining them.
The derivative of sin(x2) is 2x
cos(x2) using the chain rule.
The derivative of ln(5x) is 1/x.
Now to combine these using the product rule. Our answer will be:
2x*cos(x2)*ln(5x) + sin(x2)*1/x

Answered by Thomas C. Maths tutor

7762 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do i use chain rule to calculate the derivative dy/dx of a curve given by 2 "parametric equations": x=(t-1)^3, y=3t-8/t^2


Find the first and second derivatives of: y = 6 - 3x -4x^-3, and find the x coordinates of the line's turning points


What is the y-coordinate minimum point of y = 3x^2 + x - 4


On the same diagram, sketch the graphs of: y = |5x -2| and y = |2x| and hence solve the equation |5x - 2| = |2x|


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences