Differentiate the function: y = sin(x^2)*ln(5x)

We are tasked with differentiating y = sin(x2)ln(5x)
This function is actually a product of the functions:
sin(x2) and ln(5x)
Therefore the product rule will be required.
First let's calculate the derivatives of our individual functions before combining them.
The derivative of sin(x2) is 2x
cos(x2) using the chain rule.
The derivative of ln(5x) is 1/x.
Now to combine these using the product rule. Our answer will be:
2x*cos(x2)*ln(5x) + sin(x2)*1/x

Answered by Thomas C. Maths tutor

8139 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

At what point(s) do lines y = x^2 - 5x - 14 and y = 3x + 2 intersect? Write your answer in surd form


The probability function of a discrete random variable X is given by p(x)=x^2 x =1,2,3. Find E(X)


Derive the following with respect to x1: y=(x1*x2)/(x1+x2).


Using the substitution x = 2cosu, find the integral of dx/((x^2)(4-x^2)^1/2), evaluated between x=1 and x=sqrt(2).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences