Solve x^3+2*x^2-5*x-6=0

First find a root of the function: f(x)=x^3+2x^2-5x-6 f(2)=(2)^3+2*(2)^2-5*(2)-6 =0. Therefore, (x-2)(x^2+Ax+3)=0 where A is an unkown constant. Compare x^2 coeffecients: A-2=2, A=4. So (x-2)(x^2+4x+3)=0. Then factorise the quadratic to get (x-2)(x+3)(x+1)=0. Therefore x=2 or x=-3 or x=-1

Related Maths A Level answers

All answers ▸

How do I solve equations like 3sin^2(x) - 2cos(x) = 2


How do you multiply matrices together?


integrate (4x^3 +3)(x^4 +3x +16)^2 dx


f(x)=2x^3-7x^2+4x+4, prove that (x-2) is a factor and factorise f(x) completely


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences