Factorise fully x^3 - 10x^2 + 16x

The first thing we notice is that there is a common factor of x. Thus we can factor it out and get:x(x^2 - 10x + 16)
This becomes much easier to deal with. We now focus on the equation in the brackets.We need to find 2 numbers that sum to make -10 and multiply to make +16. The only way this is possible is if both numbers are negative (we need at least one negative number to make -10 and we know negative * negative = positive so we need 2 negative numbers). So let's list these factors of +16:-1 -16-2 -8-4 -4-8 -2-16 -1
Of these, the only one that sums to -10 is -2 -8 (or -8 -2). Thus x^2 - 10x + 16 factorises to (x - 2)(x - 8)
Putting it all together,x^3 - 10x^2 + 16x = x(x - 2)(x - 3)

Answered by Karina T. Maths tutor

2679 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equation: 2x +y =18; x-y=6. (3)


A roll of card has an area of 43 m^2. A postcard has an area of 125 cm^2. How many post cards can be cut from the roll, assuming there is no wastage? (calculator question)


Find the equation of a straight line given two of its points (1,3) and (-2,5). Write your answer in the form y = mx + c.


What are the roots of the graph of this equation: x^2 + 9x + 18 = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences