Factorise fully x^3 - 10x^2 + 16x

The first thing we notice is that there is a common factor of x. Thus we can factor it out and get:x(x^2 - 10x + 16)
This becomes much easier to deal with. We now focus on the equation in the brackets.We need to find 2 numbers that sum to make -10 and multiply to make +16. The only way this is possible is if both numbers are negative (we need at least one negative number to make -10 and we know negative * negative = positive so we need 2 negative numbers). So let's list these factors of +16:-1 -16-2 -8-4 -4-8 -2-16 -1
Of these, the only one that sums to -10 is -2 -8 (or -8 -2). Thus x^2 - 10x + 16 factorises to (x - 2)(x - 8)
Putting it all together,x^3 - 10x^2 + 16x = x(x - 2)(x - 3)

KT
Answered by Karina T. Maths tutor

3263 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Make F the subject of the formula: C= 5(F-32) / 9


Find the points at which the equation y = x^2 - 12x + 35 intersects the x-axis.


Factorise and solve x2 - 8x + 15 = 0.


If f(x) = 5 – x and g(x) = 3x + 7, simplify f(2x) + g(x – 1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning