This is a question on the photoelectric effect: For potassium, the work function is 3.65E-19J. Find the maximum wavelength of light that will cause photoelectrons to be emitted when shone onto potassium.

We know thatphoton energy = minimum energy needed to free an electron + max kinetic energy of emitted photoelectronAs we have been asked for the maximum wavelength , we know these photoelectrons just have enough energy to leave the surface of the potassium, but they will not have any kinetic energy. Therefore:photon energy = min energy needed to free electron (work function) E = hf = work function as v = f * wavelengthwork function = (hv)/wavelength, therefore rearranging we get wavelength = (hv) / work function wavelength = (6.63x10-34 x 3.00x108)/(3.65x10-19)= 5.4493x10-7m = 5.45x10-7m (to 3s.f)

KB
Answered by kathryn b. Physics tutor

2888 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Explain why gas bubbles rise faster through magma as they start to expand. (3)


A sample of pure gold has a density of 19300 kgm^-3. If the density of a gold nucleus is 1.47x10^17Kgm^-3, discuss what this implies about the structure of the gold atom. [4 marks]


what is a standing wave and how is it formed ?


Explain in terms of the motion of the molecules of the gas why the volume of gas must increase if the pressure is to remain constant as the gas is heated.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning