The rate of growth of a population of micro-organisms is modelled by the equation: dP/dt = 3t^2+6t, where P is the population size at time t hours. Given that P=100 at t=1, find P in terms of t.

First, we integrate the equation with respect to t to find an equation for P. dP/dt = 3t2 + 6t Then, P= integral (3t2 + 6t) dt Integrating gives P= t3+3t2+c, c is the constant of integration. As we are given the boundary condition P=100 when t=1, sub in these values into the equation for P to find what c is. 100=13+3(12) +c Gives c=96 We get an equation for P with the correct value of c, P=t3+3t2+96

CB
Answered by Claire B. Maths tutor

3183 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

I don't fully understand the purpose of integration. Could you please explain it to me?


The curve C has equation y = x^3 - 3x^2 - 9x + 14. Find the co-ordinates and nature of each of the stationery points of C.


How do you show some quadratic polynomials are always greater than 0?


Find dy/dx where y=e^(4xtanx)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning