Find the area between the curve y = 8 + 2x - x^2 and the line y = 8 - 2x.

First sketch the curve and the line, noting down where they intersect each axis.area under y = 8 + 2x - x2 is given by the integral between 0 and 4 of (8 + 2x - x2) dx.area under line is given by the integral between 0 and 4 of (8-2x) dx. It's easier to do this than using the formula for area of a triangle!!So total area:area = integral between 0 and 4 of (8 + 2x - x2) dx - integral between 0 and 4 of (8-2x) dxarea = integral between 0 and 4 of (8 + 2x - x2 - (8-2x))dx Note we can combine the two integrals!!area = integral between 0 and 4 of (4x - x2) dxarea = [2x2 - x3/3]40 = 32/3

Answered by Maths tutor

4619 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent line to the parabola y=x^2+3x+2 at point P(1, 6).


(a) Use integration by parts to find ∫ x sin(3x) dx


A particle A of mass 0.1kg is moving at a speed of 1.5m/s to the right. It collides with a particle B of mass 0.3kg moving at a speed of 1.1m/s to the right. Calculate change in momentum of particle A if particle B has a speed of 1.4m/s after collision.


How do you find the angle between two vectors?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning