Find the area between the curve y = 8 + 2x - x^2 and the line y = 8 - 2x.

First sketch the curve and the line, noting down where they intersect each axis.area under y = 8 + 2x - x2 is given by the integral between 0 and 4 of (8 + 2x - x2) dx.area under line is given by the integral between 0 and 4 of (8-2x) dx. It's easier to do this than using the formula for area of a triangle!!So total area:area = integral between 0 and 4 of (8 + 2x - x2) dx - integral between 0 and 4 of (8-2x) dxarea = integral between 0 and 4 of (8 + 2x - x2 - (8-2x))dx Note we can combine the two integrals!!area = integral between 0 and 4 of (4x - x2) dxarea = [2x2 - x3/3]40 = 32/3

Answered by Maths tutor

4629 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integrate xcosx


Find the set of values for which: x^2 - 3x - 18 > 0


Given that y=(4x+1)^3sin 2x , find dy/dx .


Tom drink drives two days a week, the chance of him being caught per day is 1 in 100. What is the chance he will not be driving after a) one week? b) one year?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning