Show that ((sqrt(18)+sqrt(2))^2)/(sqrt(8)-2) can be written in the form a(b + 2) where a and b are integers.

First we expand the brackets on the numerator and collect the terms together. We need to get rid of the square root term on the denominator, and we do this by multiplying the numerator and denominator by sqrt(8) + 2 (since this is equivalent to multiplying by 1). This gives us the difference of two squares on the bottom, which can be expanded to give 8 - 4. We can also expand the brackets on the top, and then cancel the factors of 4, leaving us with 8sqrt(8) + 16. We can express sqrt(8) as 2sqrt(2) which gives us a common factor of 16 and the answer 16(1 + sqrt(2)), in the form given by the question.

OA
Answered by Olivia A. Maths tutor

18224 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are 30 kg of potatoes in a wheelbarrow. A farmer adds some carrots into the wheelbarrow. The total weight of the wheelbarrow now is 110 pounds. What weight of carrots did the farmer put into the wheelbarrow? 1 kg = 2.2 pounds


How to find the equation of a line from a graph?


A,B and C all lie on the line x^2 + y^2 = 49 where A is on the y axis, B is on the X axis and C is the mid point of the straight-line connecting A and B.


There are 10 balls in a bag. The balls are the same apart from their colour. Of the 10 balls, 3 are black, 5 white, 2 red. What is the probability of picking a white ball from the bag.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning