A sweet is modelled as a sphere of radius 10mm and is sucked. After five minutes, the radius has decreased to 7mm. The rate of decrease of the radius is inversely proportional to the square of the radius. How long does it take for the sweet to dissolve?

dr/dt propto -1/r^2 and integrate to find equation linking radius and time with boundary conditions. Set r = 0, answer is 7mins 37 seconds.

Answered by Igor S. Maths tutor

3087 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Two points have coordinates (1,-6) and (-2,3). Find the equation of the line which joins them, and their midpoint.


Given that log3 (c ) = m and log27 (d )= n , express c /(d^1/2) in the form 3^y, where y is an expression in terms of m and n.


Find the derivative of f where f(x)=a^x.


The curve C has equation x^2 – 3xy – 4y^2 + 64 = 0; find dy/dx in terms of x and y, and thus find the coordinates of the points on C where dy/dx = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences