Find the equation of the line that passes through (2, 4) and (7, -11)

Step 1) Write out the general equation of a straight line: y = mx + c where m is the gradient and c is where the line intersects the y-axis. Step 2) Find the gradient: m = change in y / change in x, m = (-11-4) / (7-2), m = -15 / 5 m = -3 Step 3) Find c: This can be done by substituting in co-ordinates of either of the points that the line passes through into the equation y = -3x + c, 4 = -3*2 + c, c = 10 Step 4) Write out the equation: y = -3x + 10

RG
Answered by Romily G. Maths tutor

3708 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

1. Find the value of the missing edge to 2 decimal places 2. Find the angle θ to 2 decimal places


GCSE Maths - Solve the equation (2x+3)/(x-4) - (2x-8)/(2x+1) = 1 Give your answer to 2 decimal places.


How do I solve the simultaneous equations 5x - 3y = -1 and 3x + y = 5?


Solve algebraically the simultaneous equations: 6m + n = 16 and 5m - 2n = 19


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning