Find the equation of the line that passes through (2, 4) and (7, -11)

Step 1) Write out the general equation of a straight line: y = mx + c where m is the gradient and c is where the line intersects the y-axis. Step 2) Find the gradient: m = change in y / change in x, m = (-11-4) / (7-2), m = -15 / 5 m = -3 Step 3) Find c: This can be done by substituting in co-ordinates of either of the points that the line passes through into the equation y = -3x + c, 4 = -3*2 + c, c = 10 Step 4) Write out the equation: y = -3x + 10

Answered by Romily G. Maths tutor

2985 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the inverse of the function f(x) =2x-7.


There are green and red counters in a bag. There are 30 counters in total. The ratio of red to green counters is 1 : 5. There are 5 red counters in the bag. How many green counters are in the bag?


Solve (x^2 - 4)/(2x+4)


The equation the line L1 is y=3x-2 and the equation of line L2 is 3y-9x+5=0. Show that these two lines are parallel.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences