How do you differentiate a^x?

The quick answer is that d/dx a^x = ln(a) * a^x. But why?

Well, let's go through the steps so we can understand why the formula works.

Firstly, a^x can be written as (e^(ln(a)))^x because e^(ln(z)) = z as the natural log (ln) is the inverse of e to the power. Then we can write it as e^(x * ln a) because (a^b)^c = a^(b*c). Then differentiating e^(x * ln a) = ln(a) * a^x!

KM
Answered by Kian M. Maths tutor

133948 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express x^2+3x+2 in the form (x+p)^2+q, where p and q are rational numbers.


Express the following in partial fractions: (1+2x^2)/(3x-2)(x-1)^2


Integrate Sin(x)Cos(x)dx.


Simplify the following algebraic fraction; (3x^2 - x - 2) / ((1/2)x + (1/3)).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences