A bowling ball is thrown into the alley, having velocity of 3 ms^-1 at the start of the bowling alley. It decelerates at a constant rate, before hitting the skittles at 2 ms^-1 after 4 s A) calculate the acceleration of the ball.

A)  acceleration (m/s2) = change in velocity (m/s) / time (s) 
A) -1.0 ms-1 / 4 s = -0.25 ms-2
B) Calculate the displacement the ball travelled before hitting the skittles and hence calculate the average velocity of the ball
d = 1/2 ( Vf + Vi ) × t = 0.5 x (3 + 2) ms -1 x 4 s = 10 m
Average velocity = distance / time = 10 m / 4 s = 2.5 m s-1
C) Finally, as the bowling ball weighs 10 kg, calculate the momentum with which it hits the skittles.
 momentum (kgm/s) = mass (kg) x velocity (m/s) = 10 kg x 2 ms-1 = 20 kg ms-1

AN
Answered by Alexander N. Physics tutor

2747 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

A car's speed changes from 10m\s to 40m\s in 10 seconds. What is its acceleration?


In the photoelectric effect, why is the kinetic energy of the electrons independent of the intensity of light?


A rocket travels at 500m/s two minutes after its take-off. If it was initially stationary, calculate its acceleration. If the rocket has a mass of 1800kg, what force is required to give it an acceleration of 2m/s^2?


A box is at rest on a slope with an angle ϴ. Find an expression for the static friction coefficient, μ, of the box.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning