Solve the following simultaneous equations: (1) 3x – 2y = 7 (2) 5x + 2y = 17

When looking at the two equations we can see that the 'y' terms in both equations are the same, but with the opposite sign. This means that by adding the two equations we can eliminate the 'y' values.
Step 1: (1) + (2)
3x - 2y = 7 + [5x + 2y =17]
= 8x = 24therefore: x = 3
Step 2: substitute x = 3 into either of the original equations (1) or (2)
(1) 3 (3) - 2y = 79 - 2y = 7.
Step 3: rearrange to find y
9 - 7 = 2y2 = 2yy = 1
answers: x = 3, y = 1

MF
Answered by madeleine f. Maths tutor

4576 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve these equations simultaneously: (1) 5x - 10z = -45 and (2) 9x = -5z + 80


How to recognise and make the link between probability and the algebraic demands of this question?


Solve x^(2)-x-12


How do I calculate the distance between two vectors?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning