Solve the following simultaneous equations: (1) 3x – 2y = 7 (2) 5x + 2y = 17

When looking at the two equations we can see that the 'y' terms in both equations are the same, but with the opposite sign. This means that by adding the two equations we can eliminate the 'y' values.
Step 1: (1) + (2)
3x - 2y = 7 + [5x + 2y =17]
= 8x = 24therefore: x = 3
Step 2: substitute x = 3 into either of the original equations (1) or (2)
(1) 3 (3) - 2y = 79 - 2y = 7.
Step 3: rearrange to find y
9 - 7 = 2y2 = 2yy = 1
answers: x = 3, y = 1

MF
Answered by madeleine f. Maths tutor

4089 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Adam can pay for his gym membership in one go at £180 or in monthly sums of £20. Work out the percentage increase of paying monthly to 1 decimal place.


A linear sequence starts a + 2b, a + 6b, a + 10b … The 2nd term has value 8 The 5th term has value 44 Work out the values of a and b.


Solve the quadratic equation: x^2 - 2x - 15 = 0


How is frequency density calculated?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences