Work out the gradient of the curve y=x^3(x-3) at the point (3,17)

First simplify the equation of the curve y= x^4 - 3x^3 .The gradient is the differential.To differentiate, bring down the power and take one from it.x^4 becomes 4x^3-3x^3 becomes (-3x3)= -9x^2dy/dx= 4x^3 - 9x^2Coordinates are written in (x,y) form. Hence x=3.Gradient at x=3 = 4x^3 - 9x^2 = 4(3^3) - 9(3^2) = 108 - 81 = 27

SM
Answered by Sophie M. Further Mathematics tutor

3546 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

x^3 + 2x^2 - 9x - 18 = (x^2 - a^2)(x + b) where a,b are integers. Work out the three linear factors of x^3 + 2x^2 - 9x - 18. (Note: x^3 indicates x cubed and x^2 indicates x squared).


Show that 2cos^2(x) = 2 - 2sin^2(x) and hence solve 2cos^2(x) + 3sin(x) = 3 for 0<x<180


Show that (n^2) + (n+1)^2 + (n+2)^2 = 3n^2 + 6n + 5, Hence show that the sum of 3 consecutive square numbers is always 2 away from a multiple of 3.


Work out 7/(2x^2) + 4/3x as a single fraction in its simplest form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning