Work out the gradient of the curve y=x^3(x-3) at the point (3,17)

First simplify the equation of the curve y= x^4 - 3x^3 .The gradient is the differential.To differentiate, bring down the power and take one from it.x^4 becomes 4x^3-3x^3 becomes (-3x3)= -9x^2dy/dx= 4x^3 - 9x^2Coordinates are written in (x,y) form. Hence x=3.Gradient at x=3 = 4x^3 - 9x^2 = 4(3^3) - 9(3^2) = 108 - 81 = 27

SM
Answered by Sophie M. Further Mathematics tutor

3027 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

A curve has equation y = ax^2 + 3x, when x= -1, the gradient of the curve is -5. Work out the value of a.


If y=(x^2)*(x-10), work out dy/dx


How do I find the limit as x-->infinity of (4x^2+5)/(x^2-6)?


Differentiate y = x*cos(2x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences