Find the stationary points on the curve: y = x^3 + 3x^2 +2x+5

Firstly differentiate the function:f(x) = x3 + 3x2 + 2x + 5 (function)f'(x) = 3x2 + 6x + 2 (gradient function)
Stationary points are points where the graph has a gradient of zero
3x2 + 6x + 2 = 0
In order to find the x-values we need to solve the quadratic equation:a = 3, b = 6, c =2 ----> sub into the equation (will explain on whiteboard)Use quadratic equation to find x = -1 +/- root(3)/3
Finally sub in the x - values into the initial function to find the corresponding y values. Done!

Answered by Nicolas C. Maths tutor

4905 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

given that angles A and B are such that, sec^2A-tanA = 13 and sinBsec^2B=27cosBcosec^2B


Find the differential of f(x)=y where y=3x^2+2x+4. Hence find the coordinates of the minimum point of f(x)


A machine is used to manufacture custom spoilers for two types of sports car( Car A and Car B0. Each day, in a random order, n are produced for Car A and m for Car B. What is the probability that the m spoilers for Car B are produced consecutively?


The polynomial f(x) is define by f(x) = 3x^3 + 2x^2 - 8x + 4. Evaluate f(2).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences