Find the stationary points on the curve: y = x^3 + 3x^2 +2x+5

Firstly differentiate the function:f(x) = x3 + 3x2 + 2x + 5 (function)f'(x) = 3x2 + 6x + 2 (gradient function)
Stationary points are points where the graph has a gradient of zero
3x2 + 6x + 2 = 0
In order to find the x-values we need to solve the quadratic equation:a = 3, b = 6, c =2 ----> sub into the equation (will explain on whiteboard)Use quadratic equation to find x = -1 +/- root(3)/3
Finally sub in the x - values into the initial function to find the corresponding y values. Done!

Answered by Nicolas C. Maths tutor

4752 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

use the substitution u=2+ln(x) to show that int(e,1(ln(x)/x(2+ln(x)^2))dx)=p+ln(q) , where p and q are rational numbers.


A Curve has parametric equation x=2sin(t), y= 1+cos(2t), -pi/2<=t<=pi/2. a) Find dy/dx when t=pi/3. b) Find the Cartesian equation for the curve in form y=f(x), -k<=x<=k. c) Find the range of f(x)


y=4sin(kx) write down dy/dx.


Find the gradient of a curve whose parametric equations are x=t^2/2+1 and y=t/4-1 when t=2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences