When a particle travels in a circle of radius r, at constant speed v, what is its acceleration

v2/r, towards the center of the circle.Remember that acceleration is the rate of change of velocity, not merely of speed. This means that the change in direction is important. In a unit of time, the velocity vector will rotate by a small angle. This angle is proportional to the angular velocity (w) and to the size of the time unit. This means that the acceleration has magnitude vw. Since w=v/r, this is v2/r. Since the speed is constant, we know that the force is acting perpendicular to the direction of motion, so we finally have v2/r towards the center of the circle.

Answered by Physics tutor

2260 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How can the average speedx of a gas molecule be derived?


An electron of mass 9.11x10^(-31) is fired from an electron gun at 7x10^6 m/s. What size object will the electron need to interact with in order to diffract?


What is the De Broglie wavelength of an electron given it has a kinetic energy of 1 eV? You are given the mass of an electron is 9.11x10^-31 kg and Planck's constant is 6.63x10^-34


Why is an object that moves in a circular path accelerating when it has constant speed?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning