When a particle travels in a circle of radius r, at constant speed v, what is its acceleration

v2/r, towards the center of the circle.Remember that acceleration is the rate of change of velocity, not merely of speed. This means that the change in direction is important. In a unit of time, the velocity vector will rotate by a small angle. This angle is proportional to the angular velocity (w) and to the size of the time unit. This means that the acceleration has magnitude vw. Since w=v/r, this is v2/r. Since the speed is constant, we know that the force is acting perpendicular to the direction of motion, so we finally have v2/r towards the center of the circle.

Answered by Physics tutor

1545 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the De Broglie wavelength of an electron given it has a kinetic energy of 1 eV? You are given the mass of an electron is 9.11x10^-31 kg and Planck's constant is 6.63x10^-34


State similarity and difference between the electric field lines and the gravitational field lines around an isolated positively charged metal sphere.


Particle A (60kg) moves right at 50m/s. It collides with particle B (250kg) moving left at 10m/s. If after the collision particle A moves left at 20m/s, calculate the final velocity of particle B


Explain what is meant by the term "plastic deformation".


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences