Jane drops a football from the roof onto the ground below. The ball weighs 0.8kg and the distance the ball falls is 5m. Assuming there are no external forces acting on the ball, what speed will the ball be travelling at just before it hits the ground?

As the ball falls from a height to the floor, the gravitational potential energy stored in the ball will be converted to kinetic energy.The gravitational potential energy of the ball can be calculated using:gpe = mgh : m =0.8kg, g=9.8N/kg, h=5m so gpe = 0.8 x 9.8 x 5 = 39.2JKinetic energy can be calculated using: eK = 0.5 x m x v^2 . We can rearrange this to get v = SqRt (( 2 x eK )/ m).eK = 39.2J, m=0.8kg, so v = SqRt ((2 x 39.2)/0.8) = 9.899 m/s. To 2sf this is 9.9m/s

KO
Answered by Katie O. Physics tutor

1962 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

What properties makes an object stable?


An electric Iron rated at 2600 W contains a steel plate, heated to a working temperature of 215°C. Room temp=18°C. Deduce whether the plate could reach its working temperature in less than 1 minute. Mass (steel plate)=890g & C (steel)=450J/kg/K


Using newtons laws explain how a falling object can reach terminal velocity (6)


Explain the input and output energy sources for a car engine. How would you calculate the efficiency? Explain in terms of the inputs and outputs how the efficiency could be improved.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning