Jane drops a football from the roof onto the ground below. The ball weighs 0.8kg and the distance the ball falls is 5m. Assuming there are no external forces acting on the ball, what speed will the ball be travelling at just before it hits the ground?

As the ball falls from a height to the floor, the gravitational potential energy stored in the ball will be converted to kinetic energy.The gravitational potential energy of the ball can be calculated using:gpe = mgh : m =0.8kg, g=9.8N/kg, h=5m so gpe = 0.8 x 9.8 x 5 = 39.2JKinetic energy can be calculated using: eK = 0.5 x m x v^2 . We can rearrange this to get v = SqRt (( 2 x eK )/ m).eK = 39.2J, m=0.8kg, so v = SqRt ((2 x 39.2)/0.8) = 9.899 m/s. To 2sf this is 9.9m/s

KO
Answered by Katie O. Physics tutor

1911 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

What is teminal velocity?


Does a negative acceleration always mean that the object is slowing down?


A rocket travels at 500m/s two minutes after its take-off. If it was initially stationary, calculate its acceleration. If the rocket has a mass of 1800kg, what force is required to give it an acceleration of 2m/s^2?


What is the difference between acceleration, speed and velocity?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning