Jane drops a football from the roof onto the ground below. The ball weighs 0.8kg and the distance the ball falls is 5m. Assuming there are no external forces acting on the ball, what speed will the ball be travelling at just before it hits the ground?

As the ball falls from a height to the floor, the gravitational potential energy stored in the ball will be converted to kinetic energy.The gravitational potential energy of the ball can be calculated using:gpe = mgh : m =0.8kg, g=9.8N/kg, h=5m so gpe = 0.8 x 9.8 x 5 = 39.2JKinetic energy can be calculated using: eK = 0.5 x m x v^2 . We can rearrange this to get v = SqRt (( 2 x eK )/ m).eK = 39.2J, m=0.8kg, so v = SqRt ((2 x 39.2)/0.8) = 9.899 m/s. To 2sf this is 9.9m/s

KO
Answered by Katie O. Physics tutor

1931 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

How do you rearrange equations at Physics GCSE ?


What's the difference between a vector and a scalar?


A person weighs 620N on Earth. The gravitational constant on Mars is 3.8m/s^2. How much does this person weigh on Mars?


A Car of mass 1000kg applies a constant 200N breaking force over a distance of 30m and comes to a complete stop. How fast was the car going the instant the brakes were engaged.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning