Jane drops a football from the roof onto the ground below. The ball weighs 0.8kg and the distance the ball falls is 5m. Assuming there are no external forces acting on the ball, what speed will the ball be travelling at just before it hits the ground?

As the ball falls from a height to the floor, the gravitational potential energy stored in the ball will be converted to kinetic energy.The gravitational potential energy of the ball can be calculated using:gpe = mgh : m =0.8kg, g=9.8N/kg, h=5m so gpe = 0.8 x 9.8 x 5 = 39.2JKinetic energy can be calculated using: eK = 0.5 x m x v^2 . We can rearrange this to get v = SqRt (( 2 x eK )/ m).eK = 39.2J, m=0.8kg, so v = SqRt ((2 x 39.2)/0.8) = 9.899 m/s. To 2sf this is 9.9m/s

Answered by Katie O. Physics tutor

1281 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

An electric whisk in a bakery has two motors, each with an average power of 1500W. The whisk is used for 4 hours each day, 7 days a week. Electricity costs 18p per kilowatt-hour. Calculate the cost of the electricity used by the whisk in one week.


What is Newton's first law of motion?


Photons with 605 THz frequency strike metal of 1.2eV work function. Calculate the maximum energy of photoelectrons and their velocity. What amount of energy is necessary to stop all photoelectrons? (Planck's constant. electron mass and charge are given)


A person swims from a depth of 0.5m to 1.7m below the surface of the sea. Denisty Sea Water = 1030 kg/m^3. g=Gravitational Field Strength = 9.8 N/kg. Calculate the change in pressure on the swimmer and give the unit.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences