Find the square roots of 2 + isqrt(5)

Since we’re finding the square roots of 2 + isqrt(5) then (x+iy)^2 = 2 + isqrt(5)Thereforex^2 + 2ixy - y^2 = 2 + isqrt(5)Take real and imaginary parts it followsx^2 - y^2 = 2 and 2ixy = isqrt(5)solving this simultaneous equation for x and yx = +- sqrt(10)/2 and y = +- sqrt(2)/2So, answering the question, the square roots of 2 + isqrt(5) are+- sqrt(10)/2 +- isqrt(2)/2

Related Further Mathematics A Level answers

All answers ▸

If the complex number z = 5 + 4i, work out 1/z.


Find the four roots of the equation z^4 = + 8(sqrt(3) + i), in the form z = r*e^(i*theta). Draw the roots on an argand diagram.


Using a Taylor's series or otherwise; derive Euler's Formula


Prove De Moivre's by induction for the positive integers


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences