complete the square by rewriting x^2+6x-15 in the form (x+p)^2-q

To complete the square the first thing you must do is divide the coefficient (number in front) x by 2 to give (x+3)^2We must then expand out (x+3)^2 which can be done by writing it as (x+3)(x+3) then using the foil method to give x^2+6x+9 In order to complete the square we must now subtract 9 from -15 to give -24. The final answer can now be written as (x+3)^2-24

Answered by Lamees A. Maths tutor

3113 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

f(x)=cos(x), g(x)=2+cos(x-1), state g(x) as a vector applied to f(x)


Write 0.2(54) as a fraction in its simplest form. (Where 0.2(54) = 0.254545454...)


A)Write x^2 – 8x + 25 in the form (x – a)^ 2 + b. (B) Write down the coordinates of the turning point of the graph of y = x2 – 8x + 25. (C)Hence describe the single transformation which maps the graph of y = x2 onto the graph of y = x2 – 8x + 25.


Q = P / (R (4-t)), P=36, R= 3, t=-2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences