Given the rate of thermal energy transfer is 2.7kW, the volume of the water tank is 4.5m^3, the water is at a temperature of 28oC, density of water is 1000kgm-3 & c=4200Jkg-1K-1. Calculate the rise in water temperature that the heater could produce in 1hr

The equations needed to solve this problem are outlined below. E = mc(T2 - T1) d = m/v P = E/tYou first need to work out the mass of the water. m = 1000 x 4.5 = 4500kg You then need to work out the amount of energy produced by the heater in one hour. 2700 = E / (60 x 60)E = 9.72 x 106JThe change in temperature of the water can then be calculated.9.72 x 106 = 4500 x 4200 x (T2 - T1)Change in T = 0.51K

JB
Answered by Jasmine B. Physics tutor

2722 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A gold leaf electroscope with a zinc plate top is charged by briefly connecting it to the negative electrode of a high-voltage supply. Explain how the gold leaf will appear and how the leaf can be caused to drop again.


Difference between compression ignition engine and a spark ignition engine


A stationary unstable neutral particle decays into 2 separate particles with equal mass and velocity, what might the resulting bubble chamber diagram look like?


Given a graph of the displacement of a particle, how can you tell if it is in Simple Harmonic Motion?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning