Differentiate the following: y=(7x^2+2)sinx

Differentiate using the product rule.Product rule: for y=uv , where u and v are functions of x, dy/dx=vdu/dx + udv/dxy=(7x2+2)sinx so u=(7x2+2) and v=sinx . By differentiating these functions:du/dx=14x and dv/dx=cosxnow we have expressions for u, v, du/dx and dv/dx, we can find dy/dx.Recall dy/dx=vdu/dx + udv/dx, by substituting our expressions:dy/dx=14xsinx +(7x2+2)cosx

ET
Answered by Eleanor T. Maths tutor

3318 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What are radians, why can't we just use degrees?


Express 3 cos θ + 4 sin θ in the form R cos(θ – α), where R and α are constants, R > 0 and 0 < α < 90°.


What is the equation of the curve that has gradient dy/dx=(4x-5) and passes through the point (3,7)?


Find the Co-ordinates and nature of all stationary points on the curve y=x^3 - 27x, and attempt to sketch the curve


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning