Differentiate the following: y=(7x^2+2)sinx

Differentiate using the product rule.Product rule: for y=uv , where u and v are functions of x, dy/dx=vdu/dx + udv/dxy=(7x2+2)sinx so u=(7x2+2) and v=sinx . By differentiating these functions:du/dx=14x and dv/dx=cosxnow we have expressions for u, v, du/dx and dv/dx, we can find dy/dx.Recall dy/dx=vdu/dx + udv/dx, by substituting our expressions:dy/dx=14xsinx +(7x2+2)cosx

ET
Answered by Eleanor T. Maths tutor

3430 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

I already done this.


A stone, of mass m , falls vertically downwards under gravity through still water. The initial speed of the stone is u . Find an expression for v at time t .


Find the equation of the line tangential to the function f(x) = x^2+ 1/ (x+3) + 1/(x^4) at x =2


The function f is defined for all real values of x as f(x) = c + 8x - x^2, where c is a constant. Given that the range of f is f(x) <= 19, find the value of c. Given instead that ff(2) = 8, find the possible values of c.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning