How do you integrate (2x)/(1+x^2) with respect to x?

The key here is to recognise that this is in the form f'(x)/f(x). We can use the idea that integration is the inverse of differentiation, and the knowledge that the derivative of ln(f(x)) is equal to f'(x)/f(x). In this case f(x)=1+x^2, so we have that the integral of (2x)/(1+x^2) is equal to ln(1+x^2)+c.

Related Maths A Level answers

All answers ▸

How to differentiate y=x^3+4x+1 when x=3


Solve the equation: 5^(2x+1) = 7, giving your answer correct to four decimal places.


Find the derivative and following function and hence find the value of coordinates for when the function is at a stationary point:


Please Simplify: (2x^2+3x/(2x+3)(x-2))-(6/x^2-x-2))


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences