How do you integrate (2x)/(1+x^2) with respect to x?

The key here is to recognise that this is in the form f'(x)/f(x). We can use the idea that integration is the inverse of differentiation, and the knowledge that the derivative of ln(f(x)) is equal to f'(x)/f(x). In this case f(x)=1+x^2, so we have that the integral of (2x)/(1+x^2) is equal to ln(1+x^2)+c.

Answered by Maths tutor

5138 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve dy/dx= (x√(x^2+3))/e^2y given that y=0 when x=1, giving your answer in the form y = f(x)


Explain what is meant by a critical path.


What is the equation of the tangent to the circle (x-5)^2+(y-3)^2=9 at the points of intersection of the circle with the line 2x-y-1=0


For a curve of equation 2ye^-3x -x = 4, find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning