How do you integrate (2x)/(1+x^2) with respect to x?

The key here is to recognise that this is in the form f'(x)/f(x). We can use the idea that integration is the inverse of differentiation, and the knowledge that the derivative of ln(f(x)) is equal to f'(x)/f(x). In this case f(x)=1+x^2, so we have that the integral of (2x)/(1+x^2) is equal to ln(1+x^2)+c.

Answered by Maths tutor

4557 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would you expand (x+5y)^5?


Is AB perpendicular to BC where A =(2,0,-1), B=(4,3,-6) and C = (9,3,-4)


What methods are there for integration?


Integrate Cos^2(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning