Show that the function f(x) = x^2 + 2x + 2 is always positive for real values of x

By completing the square we find that f(x) = x2 + 2x + 2 = (x+1)2 + 1Since (x+1)2 is a number that has been squared, it must be greater than or equal to zero. Therefore, f(x) = (x+1)2 + 1 must be greater than zero because adding a positive number to a number that is greater than or equal to zero will always give a positive number.

BC
Answered by Bradley C. Maths tutor

6562 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations 2x−3y=12 and 3x + 4y = 8


How would I solve a linear simultaneous equation?


Solve the quadratic equation (x^2)-x-12=0 (easy), (x^2)-9=0 (special case), (x^2)+5x-13=0 (quadratic formula)


Find the intercept between the two equations below?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning