Integrate xsin(x) with respect to x

Apply the rule for integration for parts: Integral of udv = uv - integral of vdu. Choose u to be the term simplified the most when differentiated; in this case choose u to be x as the differential of x w.r.t x is 1. Then dv is sin(x).This means that du = 1 and v = -cos(x) as this is the integral of sin(x)Therefore the integral of xsin(x) = -xcos(x) - integral of (-cos(x))= -xcos(x) + integral of cos(x)= -xcos(x) + sin(x) + cWe must be careful not to forget the constant of integration, c. This arises due to the fact that any constant (i.e. any term with no x dependence) becomes zero when differentiated.

MS
Answered by Michael S. Maths tutor

2667 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

By first expanding the brackets, differentiate the equation: y=(4x^4 + 3x)(2x^2 - 9)


Find the maximum point of the curve from its given equation: [...]


Given f(x) = 7(e^2x) * (sin(3x)), find f'(x)


Find the second derivate d^2y/dx^2 when y = x^6 + sqrt(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences