Integrate xsin(x) with respect to x

Apply the rule for integration for parts: Integral of udv = uv - integral of vdu. Choose u to be the term simplified the most when differentiated; in this case choose u to be x as the differential of x w.r.t x is 1. Then dv is sin(x).This means that du = 1 and v = -cos(x) as this is the integral of sin(x)Therefore the integral of xsin(x) = -xcos(x) - integral of (-cos(x))= -xcos(x) + integral of cos(x)= -xcos(x) + sin(x) + cWe must be careful not to forget the constant of integration, c. This arises due to the fact that any constant (i.e. any term with no x dependence) becomes zero when differentiated.

Answered by Michael S. Maths tutor

2139 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show using mathematical induction that 8^n - 1 is divisible by 7 for n=1,2,3,...


Use the formula 5p + 2q = t to find the value of q when p = 4 and t = 24. 6


Solve the simultaneous equations: y + 4x + 1 = 0, and y^2 + 5x^2 + 2x = 0.


Using the limit definition of the derivative, find the derivative of f(x)=sin(3x) at x=2π


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences