Find the equation of the tangent to the curve y=x^2+5x+2 at the point where x=5

Step 1: Differentiate the equation of the curve (this gives a function for the gradient of the curve at a specific point)Step 2: Substitute x value into the differential of the curve to obtain gradient (m)Step 3: Obtain y co-ordinate by substituting x into equation of the curveStep 4: Substitute y, x and gradient (m) values into general equation of a line (y=mx+c)Step 5: Work out the value of the y intercept (c)Step 6: Substitute values of gradient (m) and y intercept (c) into general equation of a line (y=mx+c) for the final answer

MR
Answered by Muhammed R. Maths tutor

4470 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Consider the functions f and g where f (x) = 3x − 5 and g (x) = x − 2 . (a) Find the inverse function, f^−1 . (b) Given that g^−1(x) = x + 2 , find (g^−1 o f )(x) . (c) Given also that (f^−1 o g)(x) = (x + 3)/3 , solve (f^−1 o g)(x) = (g^−1 o f)(x)


What is the intergral of 6.x^2 + 2/x^2 + 5 with respect to x?


Given that y=x^3 +2x^2, find dy/dx . Hence find the x-coordinates of the two points on the curve where the gradient is 4.


Integrate x*ln(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning