Draw a graph depicting a skydivers speed against time when jumping from a plane, until he deploys his parachute, explaining the logic of your answer through the forces applicable to the body.

Upon jumping from the plane, the diver experiences three forces; a downward force from his weight; opposed by a lift force (equal to the weight of the air he displaces); and an upward drag force = ½ . (CD.(RHO).V2.A).
Initially the largest force is the wight of the jumper, leading an increase in downward velocity due to newtons second law, however as can be seen from the drag equation, this increase in velocity will lead to a larger increase in drag force, slowing the divers acceleration, until the downward forces = the up. At this point the diver is at his terminal velocity. When he releases his parachute, there is again a massive increase in the drag force due to the larger frontal area (A), thereby decelerating the diver until he again reaches a new, reduced, terminal velocity.

Answered by Bronagh R. Physics tutor

1649 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

A person has a suitcase with wheels. The person pulls the suitcase with a horizontal force of 13 N for 110 m. Calculate the work done on the suitcase by the person (3 marks).


Why do airbags make a car safer


What type of radioactive decay reduces the mass number of a nucleus? Explain how it works.


How do I remember all the formulas I will need for questions.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences