Draw a graph depicting a skydivers speed against time when jumping from a plane, until he deploys his parachute, explaining the logic of your answer through the forces applicable to the body.

Upon jumping from the plane, the diver experiences three forces; a downward force from his weight; opposed by a lift force (equal to the weight of the air he displaces); and an upward drag force = ½ . (CD.(RHO).V2.A).
Initially the largest force is the wight of the jumper, leading an increase in downward velocity due to newtons second law, however as can be seen from the drag equation, this increase in velocity will lead to a larger increase in drag force, slowing the divers acceleration, until the downward forces = the up. At this point the diver is at his terminal velocity. When he releases his parachute, there is again a massive increase in the drag force due to the larger frontal area (A), thereby decelerating the diver until he again reaches a new, reduced, terminal velocity.

Answered by Bronagh R. Physics tutor

1546 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

The loudspeaker produces a sound wave with a frequency of 850 hertz and a wavelength of 0.4 metres. Calculate the speed of this sound wave. Give the unit


A roller coaster car starts stationary at the top of a downwards slope. At the bottom of the slope, it has a speed of 30m/s. Use the conservation of energy to find the vertical height of the slope. (Use g=10 m/s^2)


How to calculate temperature of expanded ideal gas.


Explain Newton's laws of motion


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences