Solve the following set of simultaneous equations: (eq.1) x + 3y = 10, (eq.2) 2x + y = 5

Firstly, multiply eq.1 by 2, to obtain: (eq.3) 2x + 6y = 20Next, subtract eq.2 from eq.3 to obtain: (eq.4) 5y = 15Next, divide eq.4 by 5 to obtain: y = 3Now substitute y = 3 into any of the previous equations, for example, using eq.2 we get: (eq.5) 2x + 3 = 5Now solve eq.5 by...subtracting 3 from both sides: 2x = 2dividing throughout by 2: x = 1Now we have our unique solution to the pair of simultaneous equations: x = 1, y = 3.We can check the solution works by substituting back into one of the first two equations, e.g. in eq.1: x + 3y = 1 + (3x3) = 1 + 9 = 10

Answered by Joe D. Maths tutor

3279 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

An triangular prism has base xcm, height (x+4)cm and length 4xcm. Find the volume of the prism in terms of x. Find the volume when x=2cm.


Given a material with dimensions 1.5 x 1.1 x 1.6 mm ^3 and a mass of 0.5kg. What is the density of this material? Give your answer in kg/m^3


Megan buys a car for £7,700 plus 20% VAT. She pays a deposit for the car and then pays the rest in 12 equal instalments of £642.50. How much did Megan pay as a deposit?


Solve the simultaneous equations: 3x + 2y = 4 and 4x + 5y = 17


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences