Solve the following set of simultaneous equations: (eq.1) x + 3y = 10, (eq.2) 2x + y = 5

Firstly, multiply eq.1 by 2, to obtain: (eq.3) 2x + 6y = 20Next, subtract eq.2 from eq.3 to obtain: (eq.4) 5y = 15Next, divide eq.4 by 5 to obtain: y = 3Now substitute y = 3 into any of the previous equations, for example, using eq.2 we get: (eq.5) 2x + 3 = 5Now solve eq.5 by...subtracting 3 from both sides: 2x = 2dividing throughout by 2: x = 1Now we have our unique solution to the pair of simultaneous equations: x = 1, y = 3.We can check the solution works by substituting back into one of the first two equations, e.g. in eq.1: x + 3y = 1 + (3x3) = 1 + 9 = 10

Answered by Joe D. Maths tutor

3089 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The equation of a quadratic curve is y=x^2+ax+b. The points (6,-4) and (4,-6) lie on this curve. Find the co-ordinates of the turning point of the curve.


Rectangle A has a length of 3y cm and a width of 2x cm. Rectangle B has a length of (y + 4)cm and a width of (x + 6)cm. Rectangle A has a perimeter of 94cm and Rectangle B has a perimeter of 56cm. Solve x and y and calculate the areas of each rectangle.


What is 125^(-2/3)?


You are told that the y is proportional to x^2 and that when y=75, x=5. Find a formula for x in terms of y.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences