If a footballer kicks a ball straight down the pitch at 6 ms-1 at an angle θ of 30° above the horizontal, what is the maximum height reached by the ball?

First we must remember our equations of motion, (SUVAT equations).S = Displacement U = Initial velocity V = Final velocity A = Acceleration T = TimeV = U + ATS = UT + (1/2)AT2 V2 = U2 + 2ASS = (1/2)*(U+V)T
Then we must identify what information the question has given us.
The intial velocity (U) is 6ms-1 at an angle of 30° above the horizontal.
Using trigonometery we can then find the vertical and horizontal component of the velocity.(I would then use a diagram of a triangle and SOH CAH TOA to explain how to find the vertical and horizontal components)
Vertical inital velocity = 6ms-1 * Sin(30°) = 3ms-1Horizontal intial velocity = 6ms-1Cos(30°) = 3ms-1
As we are only interested in the height the ball reaches, we will use the vertical intial velocity as our value for U.We also know the acceleration due to gravity (A) is -9.8ms-2 and that at its maximum height the ball will have a final velocity (V) of 0ms-1 .
Using these values of V and A we can find the value of T using equation 1.
V = U + A
T0 = 3 + (-9.8)TT = 0.3 seconds
Now we can use this value for T alongside U and V in equation 4 to find the vertical distance the ball reaches (S).
S = (1/2)
(U+V)TS = (1/2)(3+0)
(0.3)S = 0.45m
The maximum height the ball reaches is 0.45m




Related Physics Scottish Highers answers

All answers ▸

A 25 micro farad is charged until the potential difference across it is 500V. Calculate the charge stored at this moment.


An exoplanet of mass 1.36x10^26 kg is orbiting a star of mass 3.2x10^31 kg at a distance of 1 AU. What is the magnitude of the gravitational force between the two?


In a lab a hydrogen spectral line is observed to have a wavelength of 656nm. This line is observed in a distance galaxy to have a wavelength of 661nm, what is the recessional velocity of the galaxy?


Why does time slow down for someone standing at the bottom of a mountain compared to time for someone at the top of a mountain?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences