Prove that the derivative of tan(x) is sec^2(x).

Let y = tan(x)

Recall the definition of tan(x) as sin(x)/cos(x)

Therefore y = sin(x)/cos(x)

Use the quotient rule, which states that for y = f(x)/g(x), dy/dx = (f'(x)g(x) - f(x)g'(x))/g2(x) with f(x) = sin(x) and g(x) = cos(x).

Recall the derivatives of sin(x) as cos(x) and cos(x) as -sin(x)

This gives:

dy/dx = (cos(x)*cos(x) + sin(x)*sin(x)) / cos2(x)

Recall the trigonometric identity sin2(x) + cos2(x) = 1

Therefore dy/dx = 1/cos2(x) = sec2(x)

QED

MG
Answered by Miriam G. Maths tutor

116487 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The line AB has equation 5x + 3y + 3 = 0. The line AB is parallel to the line with the equation y = mx + c. Find the value of m.


Can you explain what a logarithm is?


A curve has equation y = e^(3x-x^3) . Find the exact values of the coordinates of the stationary points of the curve and determine the nature of these stationary points.


Solve the equation 3^(2x+1)=1000


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning