Prove that the derivative of tan(x) is sec^2(x).

Let y = tan(x)

Recall the definition of tan(x) as sin(x)/cos(x)

Therefore y = sin(x)/cos(x)

Use the quotient rule, which states that for y = f(x)/g(x), dy/dx = (f'(x)g(x) - f(x)g'(x))/g2(x) with f(x) = sin(x) and g(x) = cos(x).

Recall the derivatives of sin(x) as cos(x) and cos(x) as -sin(x)

This gives:

dy/dx = (cos(x)*cos(x) + sin(x)*sin(x)) / cos2(x)

Recall the trigonometric identity sin2(x) + cos2(x) = 1

Therefore dy/dx = 1/cos2(x) = sec2(x)

QED

MG
Answered by Miriam G. Maths tutor

116491 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A matrix M has eigenvectors (3,1,0) (2,8,2) (1,1,6) with corresponding eigenvalues 1, 6, 2 respectively. Write an invertible matrix P and diagonal matrix D such that M=PD(P^-1), hence calculate M^5.


How do you differentiate y=cox(x)/sin(x)?


How can I try and solve this differentiation, I don`t understand it?


Express x^2+3x+2 in the form (x+p)^2+q, where p and q are rational numbers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning