Simple binomial: (1+0.5x)^4

Expand (1+0.5x)4 , simplifying the coefficients. Step 1. Draw Pascal's triangle to find the coefficients       1 ;  1  2  1 ; 1  3  3  1 ; 1  4  6   4  1. As you can see, each row starts and ends with 1. The numbers in between are worked out by adding the two numbers on top. For this question, we will be using the 1 4 6 4 1 row because the expression is raised to the power of 4. This expansion will have 5 expressions. Step 2. For each term, both 1 and 0.5 are raised to powers 0 to 4, where the sum of the powers always adds up to 4. In addition, the power of x is increased from 0 to 4 as the term progress. (1+0.5x)4 = 1(1)4(0.5)0x04(1)3(0.5)1 x1 + 6(1)2(0.5)2 x24(1)1(0.5)3 x3+ 1(1)0(0.5)4 x4 First, we raising 1 to the power of 4, therefore 0.5 is raised to the power of 0. For the next term, the power of 1 decreased by 1 and the power of 0.5 increases by 1, so that the sum of the terms still equates to 4. This is done until we get 5 terms in total. Step 3. The expression can be simplified as followed: = 1 + 4(1/2)x + 6(1/4)x2 + 4(1/8)x3 + (1/16)x4 = 1 + 2x + 3/2x2 + 1/2x3 + 1/16x4

Answered by Srikka S. Maths tutor

6664 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integrate function (x^4+3x)/(x^2) with respect to x


Differentiate sin3x-3x= f(x)


The gradient of a curve is defined as Dy/dx = 3x^2 + 3x and it passes through the point (0,0), what is the equation of the curve


A ball is thrown vertically upwards with a speed of 24.5m/s. For how long is the ball higher than 29.4m above its initial position? Take acceleration due to gravity to be 9.8m/s^2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences