Describe and explain the first stages of the life cycle of a star before it reaches the main sequence.

The star begins as a stellar nebulae. This is a dense cloud of gas and dust containing hydrogen and helium. As it is under a large amount of gravitational pressure, this nebula will then collapse under gravity and heat up. This occurs due to the conversion of gravitational potential energy to thermal kinetic energy. This collapse results in a disc shaped clump of matter with the centre of gravity focused at the core. This is known as a protostar. Some of the interstellar dust can be ejected during this process. Once the protostar has formed, the dust in the surrounding disc can clump to form planets and often moons. This forms a pre-main sequence star. Eventually, the gravitational pressure will become sufficient to then allow fusion to occur. During this process, hydrogen nuclei convert to helium nuclei resulting in an overall release of a large amount of energy. The star then becomes stable as the outwards push force from nuclear fusion is in equilibrium with the inwards pull force from gravity. This then forms the main sequence star.

Answered by Laura B. Physics tutor

7099 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

An ideal gas within a closed system undergoes an isothermal expansion from an initial volume of 1m^3 to 2m^3. Given that the initial pressure of the gas is 10^5 Pa, find the final pressure of the gas following the expansion.


Give an example of 3 different types of radiation stating their make up, penetration and ionising effect.


A ball is thrown at speed u = 10.0 m/s at an angle of 30.0 degrees to the ground at height, s = 0. How far does the ball travel horizontally from its starting position? (Ignore air resistance and taking g = 9.81 m/s^2)


Show that gravitational force within a nuclei is negilible compared with the electric repulsion.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences