What is De Moivre's theorem?

In complex number ( especially for any real number) x and integer n it holds that

(cos(x) + i(sinx))^n = cos(nx) + isin(nx) where i is the imaginary unit representing as i*i = -1.

This is called  De Moivre's theorem.

This theorem can be proved by Euler's theorem which states 

e^(i*x) = cos(x) + isin(x)

then

(e^(i*x))^n = (cos(x) + isin(x))^n which equals to

e^(ixn) = cos(nx) + isin(nx)

resulting to

 (cos(x) + isin(x))^n = cos(nx) + isin(nx)

BS
Answered by BARUN S. Further Mathematics tutor

11496 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

In simple harmonic motion, where would the object have the largest speed. If the angular velocity is 2 rad s^-1, and the amplitude is 1m, what is the largest speed obtained by the object?


Prove by induction the sum of the natural numbers from 1 to n is n(n+1)/2


Let f(x)=x^x for x>0, then find f'(x) for all x>0.


Use de Moivre's theorem to calculate an expression for sin(5x) in terms of sin(x) only.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning