What is De Moivre's theorem?

In complex number ( especially for any real number) x and integer n it holds that

(cos(x) + i(sinx))^n = cos(nx) + isin(nx) where i is the imaginary unit representing as i*i = -1.

This is called  De Moivre's theorem.

This theorem can be proved by Euler's theorem which states 

e^(i*x) = cos(x) + isin(x)

then

(e^(i*x))^n = (cos(x) + isin(x))^n which equals to

e^(ixn) = cos(nx) + isin(nx)

resulting to

 (cos(x) + isin(x))^n = cos(nx) + isin(nx)

BS
Answered by BARUN S. Further Mathematics tutor

12701 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Using mathematical induction, prove that n^3+2n is divisible by 3 for all integers n


A mass m=1kg, initially at rest and with x=10mm, is connected to a damper with stiffness k=24N/mm and damping constant c=0.2Ns/mm. Given that the differential equation of the system is given by d^2x/dt^2+(dx/dt *c/m)+kx/m=0, find the particular solution.


How do you invert a 2x2 matrix?


Prove that (AB)^-1 = B^-1 A^-1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning