Using logarithms solve 8^(2x+1) = 24 (to 3dp)

Using the laws of logs you can see that if you log both sides of the equation you get: 

(2x+1)*log(8) = log(24) 

Dividing both sides of the equation by log(8) you get: 

2x+1 = log(24)/log(8)

Then it is a simple case of solving for x: 

x = 0.5*(((log(24)/log(8))-1)

x = 0.264

Answered by Graham R. Maths tutor

15143 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Tom drink drives two days a week, the chance of him being caught per day is 1 in 100. What is the chance he will not be driving after a) one week? b) one year?


I don't understand why the function "f(x)=x^2 for all real values of x" has no inverse. Isn't sqrt(x) the inverse?


find the integral of y=x^2 +sin^2(x) with respect to x between the limits 0 and pi


7x+5y-3z =16, 3x-5y+2z=-8, 5x+3y-7z=0. Solve for x,y and z.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences