Using logarithms solve 8^(2x+1) = 24 (to 3dp)

Using the laws of logs you can see that if you log both sides of the equation you get: 

(2x+1)*log(8) = log(24) 

Dividing both sides of the equation by log(8) you get: 

2x+1 = log(24)/log(8)

Then it is a simple case of solving for x: 

x = 0.5*(((log(24)/log(8))-1)

x = 0.264

Answered by Graham R. Maths tutor

14454 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y = 3x^2 + 2x^(1/2) - 12 Find dy/dx


Solve for 0<x≤2π, cos^2(x)-3cos(x)=5sin^2(x)-2, giving all answers exactly


Given that y = (( 4x + 1 )^3)sin(2x), find dy/dx.


The curve with the equation: y=x^2 - 32sqrt(x) + 20 has a stationary point P. Find the coordinates of P.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences