Answer the following simultaneous equation:

Equation 1) x+y2=5  (Equation 2) y=3x+1

The value of x is the same in both equations, as is the value of y. Therefore we can use one to work out the other. for example taking equation 1 and definining x in terms of y by rearranging the equation.

x+y2=5

y=3x+1

Equation 2 tells us what y is, so we can put that into equation 1 Therefore...

x2 + (3x+1)(3x+1) = 5

...then expand the brackets

x2 + 9x2 +3x +3x +1 = 5

...then group the factors

10x2 +6x +1 =5, then get the equation to equal 0 so we can factorise... 10x2 +6x -4 = 0

(5x-2)(2x+2)

5x-2=0 or 2x+2=0

5x=-2 or 2x=-2

x=-2/5 or x=-1

we know that x=-1 as x and y are whole numbers in this equation. Therefore, to check this we put x back into the original equations to find out the value of y.

y=3x+1.... y=3(-1)+1..... y=-2

So put the values of x and y into equations 1 to check these values...

x2 +y2=5

(-1)2+ (-2)2=5

as 1 +4 =5

Now we know the values of x and y are corect

JS
Answered by Jenn S. Maths tutor

4285 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Jo wants to work out the solutions of x^2 + 3x – 5 = 0 She says, ‘‘The solutions cannot be worked out because x^2 + 3x – 5 does not factorise to (x + a)(x + b) where a and b are integers.’’ Is Jo correct?


Find the centre and radius of the circle with equation: x^2 + y^2 -4x +8y = 5, and determine whether the point (7,-4) lies on the circle.


Electricity: 23.15 cents p/day plus 13.5 cents p/unit used Gas price: 24.5 cents p/day plus 5.5 cents p/unit used (a)(i) In 90 days, a family used 1885 units of electricity. Calculate the total cost, in dollars, of the electricity they used.


Solve 3(2y - 1) = 6


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning