The curve C has the equation y = 2x^2 -11x + 13. Find the equation of the tangent to C at the point P (2, -1).

The first step is to differentiate the equation of the curve in order to find the gradient of the tangent at the curve. Remember that when differentiating polynomials, we multiply the index of the variable x, by its coefficient, then subtract 1 from the index. In addition, remember that x0 = 1.

In this case, dy/dx = 4x - 11.

Now if we plug in the x-coordinate of P (2) into dy/dx, we will get the gradient of the tangent to the curve at P.

dy/dx = 4(2) - 11

dy/dx = 8 - 11

dy/dx = -3.

Now we find the equation of the tangent using the formula for the equation of a straight line, and plugging in the coordinates of P:

y - y= m(x - x1)

y - (-1) = -3(x - 2)

y + 1 = -3x +6

3x + y - 5 = 0.

This is the equation of the tangent to the curve C at P.

Answered by James Y. Maths tutor

15107 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is a logarithm?


How to find the derivative of arctan(x)


The mass, m grams, of a substance is increasing exponentially so that the mass at time t hours is m=250e^(0.021t). Find the time taken for the mass to double in value.


How should I go about solving a quadratic equation?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences