find general solution to: x(dy/dx) + 2y = 4x^2

Divide through by x so:      (dy/dx) +2(y/x) = 4x

Now multiply through by the intergrating factor:  e^(| (2/x) dx) = e^(2.ln(x)) = x^2

so you get:     (x^2)(dy/dx) + 2xy = 4(x^3)

Now integrate the entire equation and you get:        y(x^2) = |(4(x^3))dx = (x^4) + c

Divide through by (x^2) to get the general solution:

y = (x^2) + 4/(x^2)

Related Further Mathematics A Level answers

All answers ▸

Solve the inequality x/(x+2) ≤ 4/(x-3) for x ≠ -2 or 3


Using your knowledge of complex numbers, such as De Moivre's and Euler's formulae, verify the trigonometric identities for the double angle.


A child weighing 50kg is pushed down a 2m long slide (u=0.1), angled at 45 degrees from the horizontal, at 5m/s. At what speed does the child reach the bottom of the slide?


How can we solve a limit having an indetermination of the type 0/0 or infinity divided by infinity?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences