find general solution to: x(dy/dx) + 2y = 4x^2

Divide through by x so:      (dy/dx) +2(y/x) = 4x

Now multiply through by the intergrating factor:  e^(| (2/x) dx) = e^(2.ln(x)) = x^2

so you get:     (x^2)(dy/dx) + 2xy = 4(x^3)

Now integrate the entire equation and you get:        y(x^2) = |(4(x^3))dx = (x^4) + c

Divide through by (x^2) to get the general solution:

y = (x^2) + 4/(x^2)

Related Further Mathematics A Level answers

All answers ▸

prove by induction that, f(n) = 2^(3n+1) + 3(5^(2n+1)) is divisible by 17 for all n>0.


Find the four complex roots of the equation z^4 = 8(3^0.5+i) in the form z = re^(i*theta)


Solve (z-i)+(z+i)+(z-1)+(z-1)


3 points lie in a plane; P1=i+2j+3k, P2=-3i+5j+2k, P3=i+2j+k. Find the Cartesian equation of the plane


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences