find general solution to: x(dy/dx) + 2y = 4x^2

Divide through by x so:      (dy/dx) +2(y/x) = 4x

Now multiply through by the intergrating factor:  e^(| (2/x) dx) = e^(2.ln(x)) = x^2

so you get:     (x^2)(dy/dx) + 2xy = 4(x^3)

Now integrate the entire equation and you get:        y(x^2) = |(4(x^3))dx = (x^4) + c

Divide through by (x^2) to get the general solution:

y = (x^2) + 4/(x^2)

MP
Answered by Matthew P. Further Mathematics tutor

15905 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Why am I learning about matrices? What are they?!


I'm struggling with an FP2 First-Order Differential Equations Question (Edexcel June 2009 Q3) and the topic in general!


Find the general solution to the differential equation: d^2y/dx^2 - 8 dy/dx +16y = 2x


Find the set of values of x for which (x+4) > 2/(x+3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning