find general solution to: x(dy/dx) + 2y = 4x^2

Divide through by x so:      (dy/dx) +2(y/x) = 4x

Now multiply through by the intergrating factor:  e^(| (2/x) dx) = e^(2.ln(x)) = x^2

so you get:     (x^2)(dy/dx) + 2xy = 4(x^3)

Now integrate the entire equation and you get:        y(x^2) = |(4(x^3))dx = (x^4) + c

Divide through by (x^2) to get the general solution:

y = (x^2) + 4/(x^2)

MP
Answered by Matthew P. Further Mathematics tutor

15617 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A curve C has equation y = x^2 − 2x − 24 x^(1/2), x > 0. Find dy/dx and d^2y/dx^2. Verify that C has a stationary point when x = 4


It is given that z = 3i(7-i)(i+1). Show that z can be written in the form 24i - k. State the integer k.


Find the GS to the following 2nd ODE: d^2y/dx^2 + 3(dy/dx) + 2 = 0


Find the modulus-argument form of the complex number z=(5√ 3 - 5i)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning