The curve C has equation y = f(x) where f(x) = (4x + 1) / (x - 2) and x>2. Given that P is a point on C such that f'(x) = -1.

Firstly, in order to solve this problem we would need to differentiate f(x) to get f'(x).

To differentiate this we would use the quotient rule. The quotient rule is that:

dy/dx = (V.dU/dx - U.dX/dx) / V^2

where U = the numerator = 4x + 1

and V = the denominator = x - 2

This would give the result of:

dy/dx = ((x - 2)4 - (4x + 1)1) / (x - 2)^2

This would then cancel down to give

dy/dx = -9 / (x - 2)^2

Knowing that dy/dx is equivalent to f'(x), we can eqwuate our expression for dy/dx to the value given in the question for f-(x), which is -1.

-1 = -9 / (x - 2)^2

At this point we can solve for x. Firstly by expanding the bracket.

-1 = -9 / (x^2 - 4x + 4)

From this we can bring the denominator to the top and group all the terms on one side.

-1 (x^2 - 4x + 4) = -9

-x^2 + 4x -4 = -9

x^2 - 4x -5 =0

Now we can solve to find the x coordinates:

(x + 1) (x -5) = 0

giving that x = -1 and x = 5

We can substitute these x values into our equation for f(x) to get the corresponding y values.

There when x = -1

y = f(x) = (4(-1) + 1) / ((-1) - 2)

Giving that y = 1 when x = -1, thus the coordinates are (-1,1)

And when x = 5:

y = f(x) = (4(5) + 1) / ((5) - 2)

so y = 7 when x = 5, thus the coordinates are (5,7)

However, in the question we were given the limit x>2, meaning that the answer cannot be (-1,1) and thus the final answer is (5,7).

CC
Answered by Chantelle C. Maths tutor

15275 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A sweet is modelled as a sphere of radius 10mm and is sucked. After five minutes, the radius has decreased to 7mm. The rate of decrease of the radius is inversely proportional to the square of the radius. How long does it take for the sweet to dissolve?


Why is the derivative of x^2 equal to 2x?


Write cosx - 3sinx in the form Rcos(x + a)


Binomial expansion of (1+4x)^5 up to x^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning